Specific Heat Capacity

Thermal Physics Lesson 1

Learning Objectives

Define specific heat capacity.

Perform calculations using $\Delta Q = mc \Delta \theta$.

Describe how specific heat capacity can be measured in the lab.

Homework

Complete worksheet to practice calculations we will look at today.

The large SHC of water is particularly important for the development and maintenance of life on Earth.

Why are we learning this?

Historical Context
Images of Joule, Kelvin
Steam engines
Thermal physics in stars

Which is hotter? Bath water or a lit match? Which needed more energy to heat it?

Heat vs. Temperature

Heat as water and temperature as wetness analogy

'Heat' is not an entity but a short hand name for a process (heating as oppose to working).

State vs. Phase

- Solids, liquids and gases are three of the different phases of matter (superfluids and plasmas are two others. Thus melting, boiling etc are changes of *phase*.
- Each phase can exist in a variety of states depending upon e.g. the temperature and pressure.
- → However, the exam board uses "state" to mean phase.

Specific Heat Capacity

Definition:-

The specific heat capacity (c) of a substance is the amount of energy needed to raise the temperature of 1kg of the substance by 1K (or 1 °C) $E = mc \Delta \theta = 5.0 \text{ kg} \times 4200 \text{ J kg}^{-1} \text{ K}^{-1} \times 10 \text{ K} = 210 \text{ kJ}$

Specific Heat Capacity

Equation:

$\Delta Q = mc \,\Delta \theta$

where:- ΔQ is the energy change in J m is the mass in kg c is the specific heat capacity in J K⁻¹ kg⁻¹ $\Delta \theta$ is the temperature change in K

Worked Example 1

- A bucket containing 11.5 litres of cold water at 10°C is taken into a house at a warmer temperature and left inside until it has reached thermal equilibrium with it new surroundings.
- If 504 kJ of energy is absorbed from the surroundings to heat the water, what is the temperature of the room?

Worked Example 1

- A bucket containing 11.5 litres of cold water at 10°C is taken into a house at a warmer temperature and left inside until it has reached thermal equilibrium with it new surroundings.
- If 504 kJ of energy is absorbed from the surroundings to heat the water, what is the temperature of the room?
- ΔQ =504 kJ
- m=11.5 kg
- **c** = $4200 \text{ J kg}^{-1} \text{ °C}^{-1}$
- $\Delta \theta = ?$

$$\Delta Q = mc \,\Delta \theta$$
$$\Delta \theta = \frac{\Delta Q}{\Delta \theta}$$

MC

Using

 $\Delta \theta = 504,000 \text{ J} / (11.5 \text{kg} \times 4200 \text{ J} \text{ K}^{-1} \circ \text{C}^{-1}) = 10.4 \circ \text{C} \text{ (to 3 s.f.)}$

So temperature of the water = $10^{\circ}C + 10.4^{\circ}C = 20.4^{\circ}C$ Temperature of the room = T of water in thermal eqm. = $20.4^{\circ}C$

Worked Example 2

- A 60 W immersion heater takes 2.5 minutes to heat 0.5 kg of water from 21 to 25, what is the specific heat capacity of the water.
- P = 60 W
- $\Delta t = 2.5 \text{ minutes} = (2.5 \times 60) \text{s} = 150 \text{ s}$
- $\Delta \theta = \theta_2 \theta_1 = 4 \text{ °C} = 4 \text{ K}$
- m=0.5 kg
- c =?

 $P = \frac{Energy}{\Delta t}$

 $\Delta Q = P \Delta t = 60 W \times 150 s = 9,000 J$ **c** = 9,000 J / (0.5 kg × 4 K) = 4,500 J kg⁻¹ K⁻¹ $c = \frac{\Delta Q}{m\Delta \theta}$

Why is it higher than the accepted value of $c = 4200 \text{ J kg}^{-1} \text{ K}^{-1}$?

Note

If a question includes heating and then melting a substance then use:-

